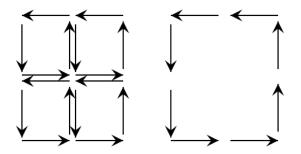
An Atlas of Differential Topology From Fundamentals to Stokes

Eleanor Waiss

Department of Mathematical Sciences '25

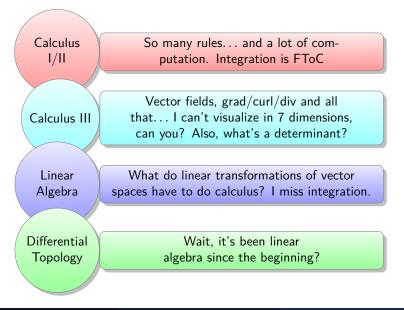
11 April 2025

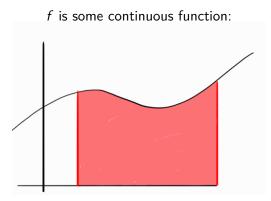


What is integration?

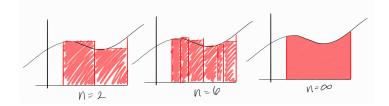
What is the little dx at the end of the integral sign?

Evolution of Calculus





How do we compute the area of the colored region? Riemann Sums!



$$\int_{a}^{b} f(x) \, \mathrm{d}x = \lim_{n \to \infty} \sum_{k=1}^{n} f(x_{k}^{*}) \Delta x_{k}$$

where
$$\{x_k\}_{k=0}^n$$
 partitions $[a, b]$
and $x_k^* \in [x_{k-1}, x_k]$

Let *f* measure the *rate of change* of another function *F*. **Net** change in *F* from *a* to *b* can be expressed as the sum of all the tiny changes of *F*:

Theorem (Fundamental Theorem of Calculus)

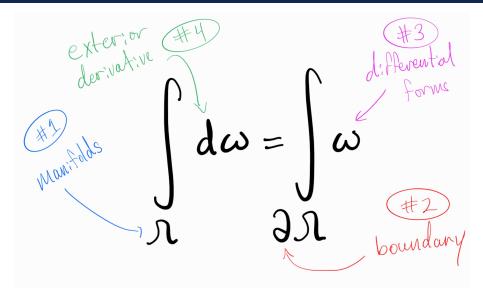
Let $F : [a, b] \to \mathbb{R}$ be continuously differentiable with derivative f. Then

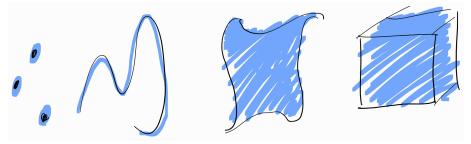
$$\int_a^b f \, \mathrm{d}x = F(b) - F(a)$$

This is actually a special case of a much more beautiful result:

$$\int\limits_{\Omega} \mathsf{d}\omega = \int\limits_{\partial\Omega} \omega$$

The Cast of our Show

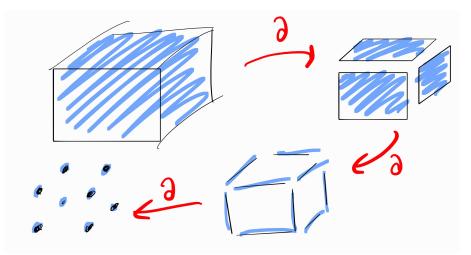




From left to right: 0-dimensional through 3-dimensional manifolds.

Example: the unit disk \mathbb{D}^2

Boundary



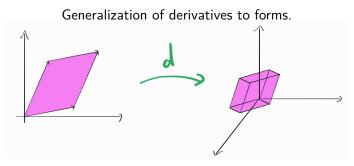
Example: $\partial \mathbb{D}^2 = S^1$, the unit sphere

From linear algebra, the **determinant** is a function that gives the signed geometric volume from a square matrix.

Differential *k*-forms are *functions* that give signed *k*-volumes of $n \times k$ (non-square) matricies: the signed volume of an *k*-parallelepiped existing in \mathbb{R}^n .

Example: the 1-form $\omega = y \, dx - x \, dy$

The Exterior Derivative



A procedure to generate an appropriate (k + 1)-form from a k-form.

Example: the 2-form $d\omega = d(y dx - x dy) = -2 dx \wedge dy$

Two integrals

$$\int_{\mathbb{D}^2} d\omega = \int_{\mathbb{D}^2} -2 \, dx \wedge dy$$
$$= -2 \int_{\mathbb{D}^2} dx \wedge dy = -2 \cdot \operatorname{Vol}_2(\mathbb{D}^2) = -2\pi$$

$$\int_{\partial \mathbb{D}^2} \omega = \int_{S^1} (y \, \mathrm{d}x - x \, \mathrm{d}y)$$

=
$$\int_{\gamma([0,2\pi])} P_{\langle \cos t, \sin t \rangle} (y \, \mathrm{d}x - x \, \mathrm{d}y)$$

=
$$\int_0^{2\pi} ((-\sin t)(\sin t) - (\cos t)(\cos t)) \, \mathrm{d}t$$

=
$$-\int_0^{2\pi} \mathrm{d}t = -\mathrm{Vol}_1 ([0,2\pi]) = -2\pi$$

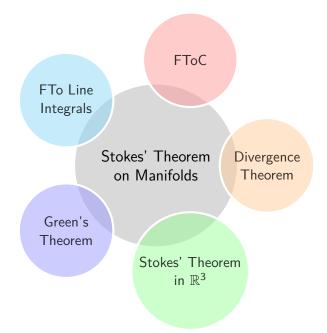
Theorem

Let ω be a differential form, and let Ω be an orientable manifold with boundary. Then

$$\int_{\Omega} \mathsf{d}\omega = \int_{\partial\Omega} \omega. \tag{1}$$

The integral over the *boundary* is the integral of the *change* over the region.

$$\int_{[a,b]} f' \, \mathrm{d}x = \int_{\partial [a,b]} f \left| \begin{array}{c} \int_{S} \mathrm{d}W_{\vec{F}} = \int_{\partial S} W_{\vec{F}} \\ \mathrm{FToC} \end{array} \right| \begin{array}{c} \int_{X} \mathrm{d}\varphi = \sum_{i} \int_{S_{i}} \varphi \\ \mathrm{Green's \ Theorem} \end{array} \right|$$



THANK YOU!

Eleanor Waiss ewaiss@butler.edu

An Atlas of Differential Topology

Butler University